\oint Tensors
Recall: (Linear Algebra)
$\operatorname{dim}: \operatorname{dim} V \quad \operatorname{dim} V+\operatorname{din} W \quad \operatorname{dim} V a \operatorname{dim} W$
V, W vector space $\leadsto V^{*}, V \oplus W, V \otimes W$ ($/ \mathbb{R}$)

Tensor Product:

$$
\operatorname{dim}(V \odot W)=\operatorname{dim} V \cdot \operatorname{dim} W .
$$

$$
V \otimes W:=\left\{\sum_{i=1}^{k} a_{i}\left(v_{i} \otimes w_{i}\right) \mid a_{i} \in \mathbb{R}, v_{i} \in V, w_{i} \in W\right\}
$$

st. $\left.\left(a_{1} v_{1}+a_{2} v_{2}\right) \otimes w=a_{1}\left(v_{1} \otimes w\right)+a_{2}\left(v_{2} \otimes w\right)\right\}$ "bilinearity"

$$
v \otimes\left(b_{1} w_{1}+b_{2} w_{2}\right)=b_{1}\left(v \odot w_{1}\right)+b_{2}\left(v \otimes w_{2}\right)
$$

Equivalently, we view:

$$
V^{*}\left(\mathbb{O} W^{*} \cong\{\phi: V \times w \rightarrow \mathbb{R} \text { bilinear" }\}\right.
$$

ie. $\phi(\cdot, w): V \rightarrow \mathbb{R}$ linear for each fixed w $w \in \mathbb{W}$
$\phi(v, \cdots): W \rightarrow \mathbb{R}$ linear for each fried $V \in V$.
Recall: \exists natural / canonical pairing

$$
\begin{aligned}
& V \times V^{*} \longrightarrow \mathbb{R} \\
& \left(v^{*} v, v^{*}\right) \longmapsto v^{*}(v)
\end{aligned}
$$

We have for any $V^{*} \in V^{*}, w^{*} \in W^{*}$.

$$
V^{*} \otimes w^{*} \Rightarrow\left(v^{*} \otimes w^{*}\right)(v, w):=v^{*}(v) \cdot w^{*}(w)
$$

We can define tensor product of linear maps as follows: Given linear maps $T: V \rightarrow \tilde{V} . S: w \rightarrow \tilde{w}$.

Moral: Any "canonical" (ie. indep. of choice of basis) constructions for vector spaces can be done fibernise on vector bundles.

Applying to the tangent bundle TM

$$
T M:=\frac{11}{p \in M} T_{p} M \xrightarrow{\text { dual }} T^{*} M:=\frac{11}{p \in M} T_{p}^{*} M
$$

cotangent bundle

Dremericuericent

$$
\begin{aligned}
& (r, s) \text {-tensor }
\end{aligned}
$$

bundle over M
Egg.) $T_{0}^{\prime} M=T M: T_{0}^{0} M=T^{*} M$
Def": $T\left(T_{s}^{r} M\right):=\{(r, s)$-tensors on $M\} \quad " C^{\infty}(M)$-module"
Some algebraic tensor operations
(1) tensor product $*$
(2) "Contraction": $C_{i, j}: V^{\otimes p} \oplus V^{* Q q} \rightarrow V^{\otimes(p-1)} \otimes V^{*(q-1)}$ (wort. io)

$$
\begin{aligned}
c_{i, j}\left(v_{1} \oplus \cdots\right. & \left.\otimes v_{p} \oplus v_{1}^{*} \oplus \ldots \odot v_{i}^{*}\right) \\
& =v_{j}^{*}\left(v_{i}\right)\left(v_{1} \odot \ldots \odot \hat{v_{i}} \odot \ldots \odot v_{p}\right) \oplus\left(v_{1}^{*} \odot \ldots \odot \hat{v_{j}^{*}} \otimes \ldots \odot v_{i}\right)
\end{aligned}
$$

Egg.) $\quad C_{1,1}: V \otimes V^{*} \rightarrow \mathbb{R}: \quad C_{1,1}\left(v \otimes v^{*}\right)=v^{*}(v)$
Note: This is just the "trace" on End $(V) \cong V \propto V^{*}$ Ex: check this: ie $\left(v \in v^{*}\right)(w)=V^{*}(w) \cdot V$
(3) "Intenior Product" (wove $v \in V$)

Given $\alpha \in\left(V^{*}\right)^{\otimes q}$, ie. $\alpha: \overbrace{V \times \cdots \times V}^{q-t \text { times }} \rightarrow \mathbb{R}$ multilinear. define $(2, \alpha) \in\left(V^{*}\right)^{(z-1)}$ as

$$
\left(\tau_{v} \alpha\right)\left(v_{1}, \ldots, v_{q}-1\right):=\alpha\left(v_{1}, v_{1}, \ldots, v_{q-1}\right)
$$

Pullback of tensors
Given a differ. $\phi: M \rightarrow N$, we can pullback (p, q)-tensors on N to obtain (p, q)-tensors on M as follow:

$$
\begin{aligned}
& \text { set. } \phi^{*}(x)=\left(\phi^{-1}\right)_{*} x \quad \forall x \in T(T N) \\
& \text { vector } \\
& \text { frodis }\left(\phi^{*} \alpha\right)(X)(x)=\alpha_{\phi(x)}\left(d \phi_{x}(x)\right) \quad \forall \alpha \in P\left(T_{i} N\right) \\
& \forall x \in T(T M), x \in M \\
& \text { - } \phi^{*}(\alpha \otimes \beta)=\phi_{\alpha}^{*} \otimes \phi^{*} \beta \quad \forall \text { tenses } \alpha, \beta \text { of lng type. }
\end{aligned}
$$

Remarks: (i) $(\phi \cdot \psi)^{*}=\Psi^{*} \cdot \phi^{*} \quad$ for $\phi, \psi \in \mathcal{D}$ of.
(ii) ϕ^{*} commutes with any contraction.

S Lie derivative
Given $X \in T(T M)$, we can define the Lie derivative (w.r.t X) flow $\underset{\left\{\phi_{t}\right\}_{t}}{\substack{\xi}} \mathcal{L}_{X}: P\left(T_{q}^{p} M\right) \rightarrow T\left(T_{q}^{p} M\right)$
by $\mathcal{L}_{x} \alpha==\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} \alpha\right)$

Properties of $d x$
(a) $L_{x} f=X(f)=d f(X), \forall f \in C^{\infty}(M)$
(b) $\mathcal{L} X Y=[X, Y] \quad \forall Y \in T(T M)$
(c) $L_{x}(\alpha \otimes \beta)=(L \times \alpha) \otimes \beta+\alpha \otimes(L \times \beta) \quad \forall$ tensors $\alpha_{i} \beta$.
(d) $L x \cdot C=C \cdot L x \quad \forall$ contraction C

FACT: These 4 properties uniquely characterise $L x$.
Reason: Suppose \exists linear map

$$
P_{x}: T\left(T_{q}^{p} M\right) \rightarrow T\left(T_{q}^{p} M\right)
$$

satisfying (a) $-(d)$ above. Claim: $P_{x}=\mathcal{L}_{x}$.
First, we show P_{x} is a "local" operator:
Dis. Suppose $\alpha, \beta \in P\left(T_{q}^{P} M\right)$ st. $\left.\left.\alpha\right|_{u} \equiv \beta\right|_{u}$ on some oren $U \subseteq M$.
Then. $\left.\left.\left(P_{x} \alpha\right)\right|_{u} \equiv\left(P_{x} \beta\right)\right|_{u}$

Why? Choose another open $V \subset C U$, ie $\bar{V} \subset U$
Fix $f \in C^{\infty}(M)$ cutoff for st

$$
\begin{cases}f \equiv 1 & \text { on } V \\ f \equiv 0 & \text { outside } U .\end{cases}
$$

Now, $\left.\left.\alpha\right|_{u} \equiv \beta\right|_{u} \Rightarrow f \alpha=f \beta$ on M

$$
\begin{aligned}
& (c) \Rightarrow \underbrace{\left(P_{x} f\right)}_{(a) \times(f)} \alpha+f\left(P_{x} \alpha\right)=\underbrace{\left(P_{x} f\right)}_{x(f)} \beta+f\left(P_{x} \beta\right) \text { on } M \\
& \Rightarrow \quad f\left(P_{x} \alpha\right)=f\left(P_{x} \beta\right) \text { on } U \\
& \Rightarrow \quad P_{x} \alpha=P_{x} \beta \quad \text { on } V \Rightarrow \text { also on } U \text { since } V \text { arditines. }
\end{aligned}
$$

Application: $\mathcal{L}_{X} \cdot \mathcal{L}_{y}-\mathcal{L}_{y} \cdot \mathcal{L}_{X}=\mathcal{L}_{[x, y]}$
Q: What is a tensor "really"?
(1,0) - tensor \leadsto vector fields
$\hat{\imath}$ dual \uparrow dual
(0,1)-tensor $\longleftrightarrow 1$-form

- What about $(0,2)$-tensors?

$$
C^{\infty}(M) \text {-module }
$$

$(0,2)$-tensors $\longleftrightarrow \operatorname{map} P(T M) \times P(T M) \longrightarrow C^{\infty}(M)$
bilinear over $C^{\infty}(M)$
Why? " \Rightarrow " Given $(0,2)$-tensor $\alpha \in \Gamma\left(T_{2}^{\circ} M\right)$. we define

$$
\begin{aligned}
& \alpha: P(T M) \times T(T M) \longrightarrow C^{\infty}(M) \\
& \text { st. } \quad \alpha(X, Y)(p)=\alpha_{p}\left(X_{p}, Y_{p}\right) \quad \forall p \in M \\
& T_{p}^{*} M \in T_{p}^{*} M
\end{aligned}
$$

Note: $\alpha(f X, Y)=f \alpha(X, Y)=\alpha(X, f Y), \forall f \in C^{\infty}(M)$
"<" Given a map

$$
\Psi: T(T M) \times P(T M) \rightarrow C^{\infty}(M), \quad C^{\infty}(M) \text {-bilinear }
$$

At each $p \in M$, we define a bilinear map (over \mathbb{R})

$$
\alpha_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}
$$

as follows, let $X_{p}, Y_{p} \in T_{p} M$. extending to ton $^{\text {non -unique }} X, Y \in T(T M)$

Ex:

$$
\Psi(X, Y)(p)==\alpha_{p}\left(X_{p}, Y_{p}\right)
$$

uses bilineants $\mid C^{c i(M)} \Rightarrow$ bell-defind \because indef of the extensions X, Y

Application: $[\because \cdot]: T(T M) \times P(T M) \rightarrow T(T M)$ is NOT a tensor
Digressive: $\operatorname{Hom}(V, w) \cong V^{*} \circ W ; \quad(V \subset W)^{*} \cong V^{*}$ © W^{*}

$$
\Psi: T\left(T_{q M}^{p}\right) \rightarrow T\left(T_{s M}^{p}\right) \Leftrightarrow \Psi \in T(\underbrace{\left(T_{i}^{p} M\right)^{*} \otimes T_{s M}^{p} M}_{T_{p+s}^{i+r} M})
$$

